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Abstract In this workwe investigate the properties and stability of deflagrationwaves
in the model which include the two-step chain-branching reaction mechanism, first
order reaction of conversion of radicals into products, and Newtonian cooling to the
surroundings. The propagation velocity, the maximum temperature and concentra-
tion of radicals monotonically decay as the rate of the radical termination reaction is
increased. The critical parameter values for the onset of instabilities and quenching
of the travelling combustion wave are found. It is demonstrated that the depletion of
radicals through the additional termination reaction enhances the onset of instabilities
and extinction. The comparison of the efficiency of the radical and thermal quenching
mechanisms is performed. The solutions emerging once the travelling deflagration
wave becomes unstable are studied.

Keywords Premixed flames · Thermal-diffusive instabilities · Flammability limit ·
Radical depletion

1 Introduction

Propagation of deflagration waves in hydrocarbon fuel mixtures is usually described
by the models with chain-branching reaction mechanism [1]. It is known that such
processes as Soret diffusion [2–8], radical-wall interaction [9–17], adding of flame
inhibitors/flame suppressants [18,19] can affect the concentration of radicals in the
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reaction zone and thus influence the flame speed, structure and stability and modify
the flammability limits.

In hydrocarbon flames the inclusion of Soret diffusion affects the mass fluxes of
light components of reacting mixtures, mainly, H and H2 [2–7]. In freely propagating
flames it is sufficient to consider the thermal diffusion of H radicals, which causes the
additional flux of H atoms in the downstream direction. This reduces the concentration
of H radicals in the reaction zone and thus modifies the rates of the reactions involving
hydrogen atoms. As a result the mass flow velocity of the deflagration calculated with
and without Soret diffusion is lower in the first case for both lean and rich mixtures.
In the case of stretched flames the thermal diffusion of H2 becomes important. It is
shown that the flammability limits are significantly influenced by the Soret effect in
this case [2,3,8].

The gas-solid wall interaction is the other route for the reduction of the concen-
tration of radicals in addition to the transport mechanisms discussed above. This is
especially important in micro-flow configurations, where the role of the surface effects
is enhanced due to the increase of surface-to-volume ratio [13,15]. To some extent the
radical quenching on the walls can be treated as an additional reaction of the radical
species decay [9,10].More detailed consideration reveals that several processes should
be taken into consideration including the adsorption of radicals on the walls, hetero-
geneous recombination reaction and desorption of products. The latter two stages
usually also release heat, which is added to the overall energy balance [11]. In most
cases the rate limiting step is the radical adsorption and the recombination kinetics
is much faster. Thus it is important to consider two processes: radical quenching and
heat release [11]. Numerical modelling reveals that radical termination mechanism
can affect the properties of the flames, and shift the limits of ignition and extinction
in the case of radical species interaction with hot walls [11–14]. The main source of
uncertainty in such analysis is the sticking coefficient, which takes the values from 0 to
1. It depends on the material of the solid wall and in some models is deliberately over-
estimated in order to understand the maximum extent of the role of radical quenching
[11,12]. Recent experimental observations show that the sticking coefficients for typi-
cal surface of micro-flow reactors are relatively small and it was found that the radical
interaction with the surface has some influence on the combustion characteristics in
the case of hot walls and decreased pressures [15–17].

Besides the interfacial mechanisms the homogeneous reactions can also influ-
ence the concentration of radical species in flame reaction zone. In [18,19] the
Zeldovich–Linan [20,21] model with chain-branching reaction kinetics is used to
analyse the freely propagating combustion waves and additional processes were
included to describe influence/effect of chemical inhibitors. Additional processes were
the endothermic stage of inhibitor decomposition producing the radical scavenger
species and subsequent termination reaction of scavenger with radicals. Suggested
mechanism was used to model the decrease of burning velocity as a result of inhibitor
addition.

It is interesting to note that there are several reasons of current interest to flame
inhibition studies. The use of flame inhibitors allows one to control different parame-
ters of combustion, such as reaction rate, burning or detonation velocity, explosion
limits, flame thickness, ignition delay etc. On the other hand effective flame inhibitors
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are used as fire suppressant agents. Recent practical interest is in finding of suitable
replacement for halon 1301 [22] due to its high ozone depletion potential (ODP).
Detailed kinetic modelling studies of flame inhibition processes were conducted in
[23–25]. Development of simplified and global kinetic models of flame inhibition
should allow theoretical studies of more complicated physical models and applica-
tion of CFD models for complex geometries and complex hydrodynamic flows with
combustion.

The aim of this work is the further studies of simple kinetic model of chain-
branching combustion reaction with typical linear radical termination steps imitating
inhibition processes. We used the two stage Zeldovich–Barenblatt model [26] to
describe the chain-branching mechanism of deflagration propagation, while the first
order radical termination reaction is employed to introduce the radical depletionmech-
anism. This approach follows the analysis of the effect of radical-wall interaction on
flames in [9,10,14]. However herewe do not restrict the consideration to the interfacial
effects only and consider the generic radical sink mechanism which can represent dif-
ferent phys-chemical processes related to reduction of radical species in the reaction
zone. The paper is focused on the investigation of critical phenomenon in deflagra-
tions, namely, extinction and the onset of instabilities, which has not been analysed
previously in this type of models.

2 Model

We consider a generalized model for premixed flame propagating that includes two
steps: auto-catalytic chain branching A + R → 2R and recombination R + M →
P + M. Here A is the fuel, R are radicals, P is the product, and M is a third body.
It is assumed that all the heat of the reaction is released during the recombination
stage and the chain branching stage does not produce or consume any heat. This
model was introduced in [26] and considered in many aspects later [27–31]. Here it is
complemented with the additional reaction step R → P representing the generalized
radical sink. The approach is similar to analysis in [9,10,14]. The thermal effect of
this reaction is taken to be negligible in comparison with the heat release rate of the
main recombination reaction.

Governing equations for this process can be written as

ρcp
∂T

∂t
= λΔT + ρQArYR − α

S

V
(T − T0),

ρ
∂YA

∂t
= ρDAΔYA − WAAb

ρYA

WA

ρYR

WR
e−E/RT ,

ρ
∂YR

∂t
= ρDRΔYR + WR

(
Ab

ρYA

WA

ρYR

WR
e−E/RT − Ar

ρYR

WR

ρ

M
− K

ρYR

WR

)
, (1)

where T is the temperature; YA and YR represent themass fractions of fuel and radicals
respectively; ρ is the density; cp is the specific heat; WA, WR , and M are the fuel,
radical, and mean molecular weights, respectively; DA and DR represent the diffusiv-
ities of fuel and radicals respectively, Ar and Ab are constants of recombination and
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chain branching reactions respectively; Q is the heat of the recombination reaction; E
is the activation energy for chain branching reaction; R is the universal gas constant;
α is the heat exchange coefficient from the volume V of the gaseous fuel confined by
the surface S to the surroundings kept at the temperature T0; K is the coefficients of
radical quenching.

The radical quenching mechanism can be of various nature. It can be caused by the
volumetric inhibition reaction of the type R + In → P1, where the inhibitor concen-
tration XIn is much higher than the radical concentration XR and the consumption
of In species is neglected. In this case K is the rate of the inhibition reaction. Also
the mechanism of radical quenching on the walls can be considered with the rate of
adsorption of radicals given as hm XR , where hm can be found from the Langmuir

adsorption isotherm [32]. In this case K = hm
S

V
.

We define the non dimensional variables

t ′ = Ωt, x ′ =
√

Ω

κ
x, θ = T

Tb
, yA = YA

Y−∞
A

, yR = YRWA

Y−∞
A WR

, (2)

whereΩ = ρAr

W
is characteristic frequency associated with the rate of recombination

reaction; κ = λ

ρcp
is thermal diffusivity; Tb = T0 + QWY−∞

A

cpWA
is the adiabatic

combustion temperature; Y−∞
A is the mass fraction of fuel in fresh unreacted mixture,

which is positive number; β = E

RTb
is the activation energy of the branching reaction.

Introducing the non dimensional parameters

r = AbWY−∞
A

ArWAeβ
, L A,R = ρcpDA,R

λ
, h = α

ρcpΩ

S

V
, k = K

Ω
. (3)

the governing equations for the non dimensional temperature, θ , concentration of fuel,
yA, and radicals, YR , can be written in non dimensional form as

∂θ

∂t
= Δθ + (1 − θ0)yR − h(θ − θ0),

∂yA
∂t

= L−1
A ΔyA − r yA yR e

β(1−1/θ),

∂yR
∂t

= L−1
R ΔyR + r yA yR e

β(1−1/θ) − (1 + k)yR , (4)

where primes are omitted, LA and LR are the Lewis numbers for fuel and radicals
respectively; β is the dimensionless activation energy of the chain-branching step; r
is the ratio of the characteristic times of the recombination and branching steps; h
is the heat loss coefficient, θ0 = T0/Tb is the ambient temperature; k is the radical
quenching coefficient. In the case of radical quenching on the walls the coefficients
h and k can be expressed in terms of dimensionless parameters as h = Nu/d2 and
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k = Sh/LRd2, where Nu and Sh are Nusselt and Sherwood numbers, respectively,
while d is the dimensionless ratio of V and S.

3 Results

3.1 Travelling waves

In order to investigate the properties and the structure of the deflagration waves we
introduce the flame coordinate as ξ = x − ct , where u represents the flame speed.
This allows to reduce the governing partial differential equations (4) to the system of
ordinary differential equations

θξξ + uθξ + (1 − θ0)yR − h(θ − θ0) = 0,

L−1
A yAξξ + uyAξ − r yA yR e

β(1−1/θ) = 0,

L−1
R yRξξ + uyRξ + r yA yR e

β(1−1/θ) − (1 + k)yR = 0, (5)

The boundary conditions are defined as

θ = θ0, yA = 1, yR = 0 for ξ → ∞,

θξ = 0, yAξ = 0, yR = 0 for ξ → −∞,

(6)

which correspond to the combustion wave propagating in the positive x direction. On
the right boundary (fresh mixture) we have cold and unburned state, where the fuel
has not been consumed yet and no radicals have been produced. On the left boundary
(ξ → −∞) we require that there is no reaction occurring so the solution reaches a
steady state of (5). Therefore the derivatives of θ , yA are set to zero and yR = 0 for
ξ → −∞. The downstream temperature reaches a constant value, which is equal to
the adiabatic flame temperature or the ambient temperature in the adiabatic (h = 0)
or non-adiabatic (h > 0) case, respectively.

The Eq. (5) subject to the boundary conditions (6) constitute the boundary value
problem, which is solved numerically using a standard shooting algorithm with a
fourth-order Runge–Kutta integration scheme first and then the results are corrected by
employing the relaxation algorithmwith Newton method. The results of the numerical
integration are presented in Figs. 1 and 2. The solution profiles, θ(ξ) and yR (ξ), are
plotted in Fig. 1 for LA = 10, LR = 1, β = 8.0, r = 103, h = 10−2, θ0 = 0.15 and
three different values of k. It should be noted that the integration domain for numerical
algorithm is several times larger than it is shown in Fig. 1, where the coordinate is
scaled as shown in the figure caption. The inclusion of the radical sink reaction path
clearly affects the distribution of temperature and species in the deflagration wave.
The intensification of the recombination of radicals with the increase of k results in
the reduction of peak values of yR . Since the heat release rate is proportional to yR
this also causes the decrease of the maximum temperature in the combustion wave. It
is interesting to note that the dependence of peak values of radical mass fraction and
temperature, maxξ {yR } and maxξ {θ}, on k is close to linear function for k ∈ [0, 0.1].
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Fig. 1 Distribution of temperature, θ(ξ), and radicals, yR (ξ), in the deflagration wave for L A = 10,
LR = 1, β = 8.0, r = 103, h = 10−2, θ0 = 0.15 and k = 0 (solid line), k = 10−2 (dotted line), k = 10−1

(dashed line). The coordinate is scaled over 55.1, 54.5, and 49.4 for k = 0, 10−2, and 10−1, respectively

Fig. 2 Flame speed, u, as function of β for L A = 10, LR = 1, r = 103, h = 10−2, θ0 = 0.15 and k = 0
(curve ‘1’), k = 10−2 (curve ‘2’), k = 10−1 (curve ‘3’), and k = 0.5 (curve ‘4’)

In Fig. 2 the dependence of the flame speed u on the dimensionless activation energy
of the branching reaction, β, is plotted for LA = 10, LR = 1, r = 103, h = 10−2,
θ0 = 0.15 and various values of k in the range from 0 to 0.5. For fixed parameter values
u(β) is characterized by a turning point (βtp,Ctp), corresponding to the extinction
of the travelling combustion waves. The turning point type of critical behaviour is
also called fold bifurcation. If the activation energy is less than the critical value for
the extinction, βtp, then there exist two solution branches propagating with different
velocities. For β > βtp travelling wave solutions do not exist. As it is discussed below
the lower solution branch is completely unstable and cannot be realized in experiments.
Therefore we focus on the upper (fast) branch only. In particular the solution profiles
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in Fig. 1 correspond to the fast solution branch. It is seen that the increase of k shifts
the critical value of the activation energy for the turning point, βtp, towards smaller
values from βtp ≈ 13.2 for k = 0 to βtp ≈ 5.88 for k = 0.5. In the inset to the Fig. 2
the dependence of u on k is illustrated for fixed value of β = 8.0. The function u(k)
demonstrates the linear behaviour.

This can be shown exactly, if we consider Eq. (5) for the vector function u =
[θ, yA, yR]T in the form

(
D̂d2/dξ2 + ud/dξ Î

)
u + N̂(u) = 0 (7)

where we have introduced Î − a3 × 3 identity matrix,

D̂ =
⎡
⎣ 1 0 0
0 L−1

A 0
0 0 L−1

R

⎤
⎦ , (8)

the reaction terms are defined as

ˆN(u) =
⎡
⎣ (1 − θ0)yR − h(θ − θ0)

−r yA yR e
β(1−1/θ)

r yA yR e
β(1−1/θ) − (1 + k)yR

⎤
⎦ . (9)

Now let u0(ξ) be a travelling wave solution of (7) for k = 0 and let us differentiate
(7) with respect to k to give

L̂w = −∂u

∂k

∂u0
∂ξ

− ∂N̂
∂k

, (10)

where L̂ = D̂∂2/∂ξ2 + u∂/∂ξ Î + M̂(ξ) is the linear differential operator, M̂(ξ) =
∂N̂/∂u is the Jacobi matrix evaluated at u0(ξ) and w = ∂u0/∂k. Together with
the problem (7–9) an adjoint problem L̂+z(ξ) = λz(ξ) is considered, where L̂+ =
D̂∂2/∂ξ2 − u∂/∂ξ Î + M̂(ξ)T . The adjoint problem also has bounded solutions z(0)

corresponding toλ = 0. For the existence of the solutions of the problem (10) the right
hand side should be orthogonal to the solution of the homogeneous adjoint problem
i.e. the following condition for the solution existence has to be satisfied

∂u

∂k
= 〈z(0), ∂N/∂k〉

〈z(0), ∂u0/∂ξ〉 . (11)

The standard inner product is used in (11) i.e. 〈f, g〉 = ∫ +∞
−∞ dξ f(ξ)g(ξ) and to

evaluate integral the solutions z(0) and u0 the corresponding equations has to solved
numerically as it is done in [33]. The relation (11) indicates that for small values of k
there is a linear dependence of the flame speed on the rate of the radical scavenging
reaction as demonstrated in the inset to Fig. 2.

123



2144 J Math Chem (2015) 53:2137–2154

3.2 Linear stability of deflagration

To analyse the stability of the travelling combustion waves the governing equations (4)
are linearised near the travelling wave solution in order to obtain the linear stability
problem which describes the evolution of the infinitely small perturbations of the
travelling wave. We seek the solution of the form u(ξ, t) = u(ξ) + εv(ξ) exp(λt +
i K y), where u(ξ) represents the travelling combustion wave, terms proportional to the
small parameter ε are the linear perturbation terms, λ is the increment of exponential
growth of perturbation, K is the wave number of the perturbation in the direction,
orthogonal to the propagation direction along x axis. Substituting this expansion into
(4), leaving terms proportional to the first order of ε only we obtain

L̂v = λv + K 2D̂v. (12)

The eigenvalue problem (12) is complemented with the boundary conditions |v| →
0 as ξ → ±∞. Here it is solved numerically by finding the dispersion relations λ(K )

of L̂ in a complex plane using the Evans function method implemented with the use
of a compound matrix approach as discussed in [29]. We skip here the details of the
technique and proceed to the description of the new results.

It is found that two types of instabilities may occur in the system depending on
the Lewis number for fuel L A. For L A > 1 the travelling instabilities emerge which
are characterized by complex dispersion relations illustrated in Fig. 3 for L A = 10,
LR = 1, r = 103, h = k = 0.01, θ0 = 0.15, and different values of β. The real
and imaginary parts of λ(K ) are plotted with the solid and dashed lines, respectively.
The imaginary branches Imλ(K ) are located very close to each other for various β

considered here. It should be noted here that the dispersion relations of the problem
(12) are always symmetricwith respect to real axis since L̂ is linear differential operator

Fig. 3 The dispersion relations Reλ(K 2) and Imλ(K 2) shown with the solid and the dashed lines, respec-
tively, for L A = 10, LR = 1, r = 103, h = k = 0.01, θ0 = 0.15, β = 11.7 (curve ‘1’), 12 (curve ‘2’),
12.15 (curve ‘3’), and 12.32 (curve ‘4’)
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Fig. 4 Critical parameter values for the onset of travelling instabilities (solid line), Hopf (dashed dotted
line) and fold (dashed line) bifurcations in the L A vs β plane for LR = 1, r = 103, h = 10−2, θ0 = 0.15
and k = 0.5, 0.1 and 0.01. The points where the solid and dashed lines merge are shown with ‘+’ symbols

with real coefficients. Thus the complex conjugate part of λ(K ) is not shown in Fig.
3. The dispersion relation for stable combustion wave with Reλ < 0 for all K is
illustrated with curve ‘1’ for β = 11.7. As β is increased to 12 the maximum of
the real part of the dispersion relation approaches the real axis at the finite Km i.e.
Reλ(Km) = 0 in such a way that Imλ(Km) 	= 0. Thus the travelling instabilities of
the deflagration wave emerge for this specific value of βtr ≈ 12. For larger values
of β the real part of the dispersion relation grows for all wave numbers, K . At the
second critical value βh ≈ 12.15 the value of Reλ(0) changes sign from negative to
positive, while Imλ(0) 	= 0. This is the Hopf bifurcation point, when the travelling
wave solution losses stability in the one-dimensional case. For β > βh the deflagration
wave is unstable with respect to the perturbations with K ≥ 0 in certain interval of
values, where Reλ > 0, as it is shown by the curve ‘4’ in Fig. 3.

The results of the bifurcation analysis for the case LA > 1 are summarized in Fig.
4, where the critical parameter values for the emergence of travelling instabilities,
Hopf and fold bifurcation are plotted in the LA vs β plane with the solid, dash-dotted
and dashed lines, respectively. The other parameter values are chosen as LR = 1,
r = 103, h = 10−2 and k = 0.01, 0.1 and 0.5. It is seen that for fixed value of k the
stability of deflagration is lost via the multidimensional travelling instability prior to
the onset of one-dimensional pulsating instabilities. There is a specific point shown
with the ‘+’ symbol, where all the critical curves intersect, which is a Bogdanov–
Takens bifurcation point similar to the one reported in [29]. It can be characterized
by the critical value of the Lewis number for fuel LBT

A > 1 and as L A tends to LBT
A

from the above Km and Imλ(Km) vanish. For 1 < LA < LBT
A the fast solution

branch becomes completely stable up to the turning point, whereas the slow solution
branch remain unstable. For this reason the neutral stability boundary and the Hopf
bifurcation loci shown with the solid and dash-dotted line in Fig. 4 are discontinued
for L A < LBT

A and the dashed line corresponding to the fold bifurcation is only plotted
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Fig. 5 The dispersion relations Reλ(K 2) for LR = 1, r = 103, h = k = 0.01, θ0 = 0.15, β = 8,
L A = 0.9 (curve ‘1’), 0.81 (curve ‘2’), and 0.7 (curve ‘3’)

for this case. In overall, as parameter k is increased and the radicals are becomingmore
depleted in the reaction zone the deflagration wave is getting more unstable. All the
critical curves are uniformly shifted towards smaller value of the activation energy, β.

For the case of LA < 1 the cellular instabilities emerge which are characterized by
the purely real (Imλ = 0) dispersion relation shown in Fig. 5 for LR = 1, r = 103,
h = k = 0.01, θ0 = 0.15, β = 8, and different values of LA = 0.7, 0.81, and 0.9.
If the Lewis number for fuel is close to one the deflagration is stable and the real part
of the dispersion relation is negative for all wave numbers except K = 0 for which
λ = 0. The typical dispersion relation for this case is illustrated in Fig. 5 with curve ‘1’
for LA = 0.9. As L A is decreased to the critical value 0.81 . . . for the onset of cellular
instabilities shown with curve ‘2’ in Fig. 5 the function λ(K ) becomes tangent to the
K -axis at the origin. Further modification of LA below the critical value changes the
dispersion relation so that there emerges a range of wave numbers K starting from
zero to certain Kc > 0, for which Reλ > 0. This is demonstrated in Fig. 5 with the
curve ‘3’ for L A = 0.7, where it is seen that the real part of the dispersion relation
is positive for K 2 ∈ [0, K 2

c ] and K 2 ≈ 0.04. In this way the cellular instabilities are
established in the system. It is worthwhile noting that for this type of the instability
onset the critical wave number grows from Kc = 0 at the critical point to larger positive
values as the bifurcation parameter is further changed away from the neutral stability
boundary into the unstable region of parameters. Therefore, there is certain difficulty
in determining the critical parameter values for the emergence of cellular instabilities
by direct integration of the governing partial differential equations (4), since in this
case a very large domain of integration in the direction transverse to the propagation
direction should be taken. Thus the spectral algorithms like the Evans functionmethod
are more convenient to solve this type of problems.

The results of the stability analysis for the case LA < 1 are summarized in Fig. 6,
where the critical parameter values, LA vs β, for the onset of the cellular instabilities
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Fig. 6 Critical parameter values for the onset of cellular instabilities (solid line) and Fold bifurcation
(dashed line) in the L A vs β plane for LR = 1, r = 103, h = 10−2, θ0 = 0.15 and k = 0.5, 0.1 and 0.01

and the fold bifurcation are plotted with the solid and the dashed lines, respectively.
The results are presented for LR = 1, r = 103, h = 10−2 and different values of
k = 0.01, 0.1, and 0.5. For fixed value of k the critical curves merge as LA → 1, while
as LA is decreased from 1 the neutral stability boundary and the fold loci diverge so
that for both curves the critical values of β monotonically decrease as LA is becoming
smaller. The influence of the radical sink reaction rate k can be seen in Fig. 6 as the
shift of all critical loci to smaller values of β with the increase of k.

3.3 Radical versus thermal quenching

In order to estimate the effect of different factors i.e. radical depletion in the reaction
zone and heat loss to the surroundings, we plot the dependence of the critical val-
ues of activation energy, βc, for the onset of travelling, cellular instabilities and fold
bifurcation as functions of either k or h.

In Fig. 7 the dependence of βc on k is shown for LR = 1, r = 103, h = 0.01,
θ0 = 0.15. The travelling instability and fold bifurcation loci are shown with the solid
and the dashed lines, respectively, for LA = 10, whereas the cellular instability and the
fold bifurcation loci are plotted with the dotted and the dash-dotted lines, respectively,
for LA = 0.8. All critical curves show monotonically decreasing behaviour as k is
increased. In the case of L A = 10 the neutral stability boundary (solid curve) related
to the emergence of travelling instabilities is located below the fold bifurcation curve
(dashed line) with difference in βc of about 5% for all k values considered here. For
L A = 0.8 the graph of βc(k) for the emergence of cellular instabilities (dotted line) is
located below the fold bifurcation curve (dash-dotted line) so that the critical values
of β differ by 10–15%. In general, all critical curves βc(k) have finite derivative with
respect to k at the origin and they can be estimated by the order in magnitude as
d(ln βc)/dk ∼ O(1). Thus in order to obtain the 1% variation in βc for any of the
critical conditions the rate of radical depletion should be of the order of 0.01.
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Fig. 7 The dependence of critical values of β on k for LR = 1, r = 103, h = 0.01, θ0 = 0.15 and different
values of L A: (i) the travelling instability and fold bifurcation loci are shown with the solid and the dashed
lines, respectively, for L A = 10; (ii) the cellular instability and the fold bifurcation loci are plotted with the
dotted and the dash-dotted lines, respectively, for L A = 0.8

Fig. 8 The dependence of critical values of β on h for LR = 1, r = 103, h = 0.01, θ0 = 0.15 and different
values of L A: (i) the travelling instability and fold bifurcation loci are shown with the solid and the dashed
lines, respectively, for L A = 10; (ii) the cellular instability and the fold bifurcation loci are plotted with the
dotted and the dash-dotted lines, respectively, for L A = 0.8

In Fig. 8 the critical values of β are plotted as function of h for LR = 1, r = 103,
h = 0.01, θ0 = 0.15. Two values of the Lewis number for fuel are used: for LA = 10
the travelling instability and fold bifurcation curves are represented by the solid and
the dashed lines, respectively, while for LA = 0.8 the cellular instability and the fold
bifurcation loci are plotted with the dotted and the dash-dotted lines, respectively. It
is seen that as the heat loss parameter tends to zero the critical values βc for fold
bifurcation become large for both LA = 0.8 and 10. In contrast to that the neutral
stability boundaries for these two cases are presented by almost parallel curves shifted
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over β. The functions βc(h) for the onset of travelling and cellular instabilities are
characterized by finite value of d(ln βc)/dh at h = 0, which can be estimated to be
of the order of O(102). This is two orders of magnitude larger than the corresponding
derivative d(ln βc)/dk(0). In other words the critical parameter values for the neutral
stability boundary and fold bifurcation are less sensitive to the variation of k, than to
the modification of the heat loss parameter.

3.4 Pulsating and cellular waves

As a next stepwe investigate the properties of two dimensional solutionswhich emerge
as the critical parameter values for the travelling or cellular instabilities are crossed
in the parameter space. The governing equations (4) are solved in a sufficiently large
rectangular coordinate region with the boundary conditions similar to (6), where ξ is
replaced with x , imposed at the edges of the space grid along the y axis and zero flux
conditions for θ , yA , and yR for the edges along the x axis. The length of the region
along the x direction is chosen to be sufficiently large so that the boundary conditions
(6) are satisfied with reasonable accuracy. The length of the region in the y direction is
chosen so as to accommodate several periods of the transverse perturbation structure
which is estimated using the dispersion relations calculated from the linear stability
analysis as discussed in the previous section. For our numerical algorithm we use the
methodof sequential splittingwith respect to physical processes, a version of predictor-
corrector scheme. Initially we solve the set of ordinary differential equations which
describe the temperature and the species concentration variations due to the branching
and recombination reactions by using the fourth order Runge–Kutta algorithm. As a
next step, equations of heat and mass transfer for fuel and radicals are solved by the
method of alternating directionswith theCrank–Nicholson scheme of the second order
approximation in space and time. The initial conditions for the numerical algorithm
are taken in a form of the travelling wave solution (or autowave) of (5).

As the critical parameter values for the travelling instability are crossed in the
parameter space a pulsating two dimensional solution emerges. This type of solution
is illustrated in Fig. 9 where the distribution of radicals yR is shown for L A = 10.0,
LR = 1.0, r = 1000, k = 0.1, h = 0.0, β = 14.2 at three moments of time t0 = 0.0,
t1 = 11, and t2 = 14 along a single period of pulsations T = 29. Since the solution is
periodic in time, t is counted from zero to T . The pulsating wave propagates along the
x axis and in Fig. 9 just a fraction of the full domain of integration over x is shown.
The coordinate x here corresponds to coordinate frame moving with the average over
period of time flame speed. The whole range of integration domain over y is plotted in
Fig. 9 and it accommodates five full periods of the spatial structure of the solution in
the transverse direction. It is seen that the pulsating solution has a from of the standing
wave along the y axis. Starting from t0 to t3 the phase shift over π is developed i.e.
the locations of peaks and deeps along y-direction completely interchange. At the
intermediate point t2 the distributions of yR over y-axis becomes quite uniform with
local minimum and maximum values of radical concentration close to each other.
The pulsating combustion waves travel on average with velocities smaller than the
flame speed for the travelling combustion waves for the same parameter values. For
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Fig. 9 The distribution of radicals yR for pulsating wave at three moments of time t0 = 0.0, t1 = 11, and
t2 = 14 along a single period of pulsations T = 29 for L A = 10.0, LR = 1.0, r = 1000, k = 0.1, h = 0.0,
β = 14.2

parameters listed in the Fig. 9 caption the pulsating wave speed u = 0.4, while the
unstable travelling wave has u = 0.45.

It is important to note that the travelling instabilities and Hopf bifurcation occur for
the choice of parameters as in Fig. 9 at β ≈ 13.8 and β ≈ 14.1, respectively. Thus the
periodic solution exists in the adiabatic case beyond both critical values for the onset
of one- and two-dimensional instabilities. We have found the pulsating solutions with
more complex dynamical behaviour for large β as well. In the nonadiabatic case for
h = 0.001 the pulsating solutions exist beyond the critical β for the emergence of
travelling instabilities, however, they exhibit extinction before the value of β for the
Hopf bifurcation is reached. For h = 0.01 no pulsating solutions have been found and
the flame quenching is observed as the neutral stability is crossed.

Crossing the neutral stability boundary for the case of L A < 1 results in the
formation of cellular waves, which represent two dimensional corrugated solutions
steadily propagating without changing their structure and speed. An example of such
travelling wave solution is illustrated in Fig. 10, where the distribution of radicals yR in
cellular wave is shown as a contour plot for LA = 0.65, LR = 1.0, r = 103, k = 0.01,
h = 0.01, β = 8.0. Here x is the coordinate in the frame co-moving with the wave,
whereas y is the coordinate in the direction transverse to the propagation direction
i.e. x-axis. Once again only a part of the integration range over x is shown in Fig.
10 for illustrative purposes. The whole range of x variation is a order of magnitude
larger. As the bifurcation parameter e.g. L A is modified from the critical value for
the onset of instabilities the flame front becomes corrugated, the planar front losses
stability and there emerge well structured cells, which are periodic in y-direction. As
a result of such bifurcation the flame surface increases, which is accompanied by the
growth of the propagation velocity in comparison to the planar regime of deflagration.
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Fig. 10 The distribution of
radicals yR in cellular wave for
L A = 0.65, LR = 1.0,
r = 1000, k = 0.01, h = 0.01,
β = 8.0

For the choice of parameters shown in the caption to Fig. 10 the critical value of the
Lewis number for fuel is about 0.81 and so at LA = 0.65 the corrugated structure
of the combustion wave is well developed in the form of the alternating crests and
concaves. Exactly four cells are fitted in the range of y coordinate variation from 0 to
200. The cellular wave propagates with u ≈ 0.56, which is higher than the velocity
of planar deflagration for the same parameter values, u ≈ 0.52, as a results of flame
front corrugation.

4 Conclusions

In this paper we numerically study the effect of depletion of the radical concentration
on the properties and stability of freely propagating flames with chain-branching reac-
tion mechanism. We mainly focus on the qualitative analysis and the well known
Zeldovich–Barenblatt model is taken to describe the chain-branching combustion
chemistry. It is supplemented by additional stage of direct first order reaction of
conversion of radicals into the products, which is aimed to mimic in very general
manner various mechanisms of depletion of the radical pool e.g. Soret diffusion,
radical recombination on the reactor surface, addition of flame inhibitors etc. This
additional radical sink reaction is competitive step to the recombination reaction of
the main chain-branching scheme of the Zeldovich–Barenblatt model. The heat loss to
the surroundings is also included in the model to make a comparison of two different
quenching mechanisms possible.

It is shown that the properties of the planar deflagration waves directly depend
on the rate of the radical sink reaction, k, which is scaled by characteristic rate of
the recombination reaction and considered here as a small parameter. The maximum
values of the flame temperature and concentration of radicals as well as the burning
velocity are found to be linearly correlated with k for k � 1. The derivative of these
quantities with respect to k can be estimated by the order of magnitude to be of the
order of O(1). Thus in order to change the concentration of radicals in the reaction
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zone by the order of 1% the radical sink reaction should have the rate of the same
order of magnitude in comparison with the rate of the main recombination reaction.
Similar estimates hold for flame temperature and normal flame speed.

Two types of critical phenomena related to the deflagration waves can be observed
in the system: the loss of stability and the fold bifurcation. The former is caused by
the onset of travelling or cellular instabilities. The latter is usually considered as clas-
sical quenching limit for flame propagation [34] and is defined as the turning point in
the dependence of the burning velocity on parameters separating the upper and lower
solution branches. The occurrence of various critical events is governed by the Lewis
number for fuel, L A. The travelling instabilities are found for Lewis numbers for fuel
greater than some critical value LBT

A > 1 associated with Bogdanov–Takens bifurca-
tion of co-dimension two at which the neutral stability boundary and fold bifurcation
loci intersect in the space of parameters. For 1 < LA < LBT

A the travelling wave
solution (the upper branch) is completely stable up to the fold bifurcation. It should be
noted that the lower solution branch is always unstable. In the case of LA < 1 the cel-
lular instabilities emerge. The neutral stability boundary and the fold bifurcation loci
are found in the plane of parameters: Lewis number for fuel vs activation energy of the
branching reaction. The influence of the radical sink reaction rate is manifested as the
uniform shift of all critical parameters to smaller values of the activation energy with
the increase of k. The relative magnitude of this modification is directly proportional
to the rate of the radical sink reaction so that to obtain the reduction in any of critical
parameter values of the order of 1% the reaction rate k should be of the order of 0.01.
It is interesting to note that critical parameter values for the neutral stability boundary
and fold bifurcation are less sensitive to the variation of k, than to the changes of the
heat loss parameter, h.

The solutions emerging as the neutral stability boundary is crossed in the space
of parameters are investigated. It is found that the pulsating or cellular combustion
waves can be obtained for LA > 1 or L A < 1, respectively. Pulsating waves are
two-dimensional dynamical patterns with the structure of standing wave in the trans-
verse direction and periodic time dependence. They propagate with velocities smaller
than the burning velocity of the planar deflagration. As the bifurcation parameter
is increased away from the stability boundary for the travelling wave solutions the
dynamics of pulsations become more complex and at certain stage the flame quench-
ing is observed. The cellular waves appear as steadily propagating corrugated fronts
with crests and concaves forming the stationary periodic structure in the transverse to
flame propagation direction. The flame curvature intensifies the combustion rate and
the velocity of cellular waves is larger then the burning velocity for the same parameter
values. The complex temporal dynamics of cellular structures emerge as the bifurca-
tion parameter is increased, which eventually lead to flame quenching. The scenarios
of dynamical flame quenching as well as the flammability limits will be investigated
in the future work.
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